
New Object Models for Seamless Transition Across

Heterogeneous Mobile Environments

Anjaneyulu Pasala D. Janaki Ram

Distributed & Object Systems Group
Department of Computer Science and Engineering
Indian Institute of Technology, Madras, India

E-mail:fanji,djramg@lotus.iitm.ernet.in

Abstract

In mobile collaborative applications, collaborators may move across heterogeneous envir-
onments. This paper proposes object models for seamless transition of collaborators across
heterogeneous environments. This is achieved by framing the various limitations of the en-
vironment as constraints and abstracting them into a constraint meta-object. Collaborator
objects are dynamically customized by attaching the appropriate constraint meta-object based
on the environment in which the collaborators are working. Remote customization of objects
is achieved by 'distributed glue model'.

Key words: Object Models, Heterogeneous Environments, Mobile Applications, Adaptation

1: Introduction

Wireless communication and mobile computing make it easy for people to collaborate
irrespective of their physical location. Flexible collaboration in mobile environments means
that applications should not be based on a single type of network [1, 4]. These applications
must adapt to high speed wired networks, low speed wireless networks and dial-up lines and
the selection depends on the current physical location of the user. These networks have varied
characteristics such as di�erent data rates, data error rates, QoS parameters, latencies and
usage costs. Moving across these networks calls for imposing some limitations for e�ciency
reasons. For example, when a user moves from a high speed network to a typically low
bandwidth wireless environment, he has to forego some of the special features like color due
to the low bandwidth of the wireless connection. Other limitations that the user may come
across in such heterogeneous environments are the assumptions that the user makes about the
facilities available with other collaborators such as multimedia equipment, graphics display,
etc. Some may be having multimedia tools while others may not. Hence the application must
be able to dynamically adapt itself to these changing environments.
This paper proposes a Mobile Constraint Meta-Object (Mobile-CO) model that separates

the environmental limitations from the actual functions of the collaborator. The environ-
mental limitations are abstracted into a meta-object. Depending on the collaborator's current
working environment the corresponding meta-object is attached to the collaborator object at
run-time. Thus the separation of environmental limitations from collaborator objects provides
a
exible adaptation to di�erent network environments. It also provides extensibility. A dis-
tributed glue model is proposed to remotely customize the objects at run-time.

1

2: The Mobile Constraint Meta-Object Model

It is possible to achieve
exible collaboration in heterogeneous environments by framing
various limitations of an environment as constraints and abstracting these constraints into a
meta-object. For example, wireless environment cannot e�ectively transfer color images. In
case the data is in color, the color should be suppressed before transmitting the data. This
limitation can be framed as a constraint. The constraint is validated before the data being
forwarded. Similarly other limitations of the environment can be framed as constraints.
The data that get transmitted should satisfy all the constraints speci�ed in the meta-object.
Depending on the environment in which the user is currently working in, the corresponding
meta-object can be dynamically attached to the collaborator object. Appropriatemeta-objects
are attached and detached upon switching of networks. Since the meta-object encapsulates
the constraints of an environment, it is named as a constraint meta-object [3]. The constraint
meta-object captures the messages sent to the collaborator object and validates them against
its constraints. Hence, the behavior of an object depends on the currently attached constraint
meta-object.
The constraint meta-object model is based on a clear separation of the functionality of a

collaborator object from its environmental constraints. The constraint meta-object consists
of a set of constraints that capture the internal state of the environment with which it
is associated. Constraint meta-object can be dynamically plugged and unplugged to the
collaborator object using plug and unplug operators respectively. When a new constraint
environment is created due to technological developments, a new constraint meta-object can
be created and attached to the collaborator object when a collaborator enters into that
environment. Hence it provides extensibility. The constraint meta-objects are instances of
the constraint meta class. The constraint meta class can be speci�ed as follows:

class name_1 : constraint name_2 {

<label1>:<constraint>:<semantic procedure> //constraint specification ...}

where name 1 refers to the constraint meta class name and name 2 refers to the class to whose
instance this constraint meta class instance is attached. The same constraint meta class can
be a constraint class to more than one class. In that case, commas are used to separate the
classes. That is, an instance of a constraint meta class can be attached to more than one class
instance. The constraint de�nition in a constraint meta class consists of two slots. One slot is
the constraint speci�cation and the other slot is the semantic procedure that is executed when
this constraint is violated. The constraint meta-object can be made to govern the internal
state of the object to which it is attached. As the collaborator object has no information about
the environment in which the collaborator is working, an environment object is introduced
that will hold the state of the environment. A reference is made by the constraint meta-object
to the environment object to know the state of the collaborator's environment. That is, the
constraints of the constraint meta-object capture the state of the environment object rather
than the collaborator object to which it is attached. This arrangement is known as Mobile
Constraint Meta-Object (Mobile-CO) model. The Mobile-CO model is depicted in Figure 1.
To achieve
exible and seamless collaboration in mobile environment, we have identi�ed

four types of constraints. The purpose of each of these constraints is explained below.
1. Receiver's Constraints at the Receiver (RCR): The constraint meta-object is

attached to the collaborator object. The client messages travel to the location of the collab-
orator object and are intercepted and validated by the constraint meta-object before being
delivered to the collaborator object. These constraints are called receiver based constraints,

Client

Constraint
ObjectMeta-Object

Environment

 C3:<env->acceptchar()=="no"> : bufferdata();

 C2:<env->acceptimages()=="yes"> : rejectimages();

 Environment env;

class WirelessConstraints : constraint technician, owner {class WirelessConstraints : constraint technician, owner {

 C4: <env->acceptvideo()=="yes"> : rejectvideo();

 WirelessConstraints(String c, String i, String a, String v, String d)
 { env = new Environment(c,i,a,v,d); }

 C1:<env->acceptcolor()== "yes"> : suppress-color();

}

 (b) Wireless Constraint class definition

Collaborator Object

(a) Mobile-CO model

Figure 1. Representation of Mobile-CO model

Network
Communication

Global

S
S
M

RCR-A

SCS-A

Collaborator BRCR-BSCR-A

RCS-A SCS-B

Wired LAN

Collaborator A

RCS-B

SCR-B

Wireless LAN

Figure 2. Di�erent types of Constraint meta-objects in mobile environments

because when the messages are received at the receiver, the constraint meta-object captures
the messages and validates them. Hence the user plugs the constraints as demanded by the
environment in which the user is currently working in. These type of constraints are called
as Receiver's Constraints at the Receiver. For example, collaborator A working in wireless
environment, as shown in Figure 2, plugs the wireless constraint meta-object so that the
messages sent to collaborator A are intercepted by the RCR-A and are validated.
2. Receiver's Constraints at the Sender (RCS): Consider the following situation.

Assume that collaborator A is working on a mobile computer using wireless connection
and collaborator B is working on a workstation connected to high speed LAN. Both the
collaborators have plugged their respective constraint meta-objects (that is RCR constraints),
namely, wireless constraint meta-object and wired constraint meta-object. Further assume
that the workstation of collaborator B does not have multimedia tools at present. In case
the collaborator A sends video frames, these frames travel all the way to the workstation
and get suppressed by the constraint meta-object, RCR-B. It does not save the bandwidth
of wireless communication which is scarce and costly. The bandwidth and time can be saved
if the validation of messages takes place at the sender's location itself. These constraints are
named as Receiver's Constraints at the Sender because the constraints put by the receiver are
validated at the sender. The RCS constraints are basically RCR constraints at the sender.
This can be achieved by bringing the RCR constraint meta-object of the receiving object to
the sender's location, as shown in Figure 2.
3. Sender's Constraints at the Sender (SCS): In a wireless environment, the user

not only has limitations on receiving the data but may also impose restrictions like compress
the data and suppress color, on the data to be sent. These limitations are imposed to

save bandwidth and power. These limitations are abstracted as constraints. These are the
constraints which are applied on the outgoing messages of an object. That is, whenever an
object generates (internally) messages to another object, these messages have to be validated.
For instance, consider an example where a collaborator is working in a wireless environment.
The user wishes to minimize the sending of data as much as possible. Therefore whatever
data the object sends should be minimized by removing the color and further by compressing
it, irrespective of the receiving object's constraints. In such cases, all the out going messages
should be passed through the constraints imposed by the object which generates them. These
types of constraints are termed as Sender's Constraints at the Sender.
4. Sender's Constraints at the Receiver (SCR): The need for these types of con-

straints arises because of SCS constraints. In the above example the user uses a compression
algorithm to compress the data before it is sent. To make the constraints fully transparent
to the receiver, the data should be uncompressed before being delivered to the receiver. This
type of arrangement is named as Sender's Constraints at the Receiver. The functions of the
RCR constraints are reciprocal to the SCS constraints. This type of arrangement facilitates
the collaborators to use their own data compression and decompression techniques.

3: Implementation of Constraint Meta-Objects using Distributed Glues

The constraint meta-objects have been implemented by using distributed glues developed
based on the glue model [2] proposed for object reuse by customization in object-oriented
systems. The glue model facilitates dynamic customization of object behavior. An object
consists of a �xed or basic behavior and variable behavior. A variable behavior can be
changed by attaching a new variable behavior at run-time. The basic behavior and the
variant behavior of an object are de�ned in two separate classes. The class that de�nes
the basic behavior is called the base class and the class that de�nes the variant behavior is
called the glue class. The mechanism of Type-hole is used to specify the variant behavior of
a class. A Type-hole consists of a set of method declarations that are speci�ed as part of a
base class and de�nitions are provided in a glue class. This mechanism helps in enhancing
and modifying the behavior of a base class by providing alternative or di�erent de�nitions
for the base class Type-hole methods in glue classes.
The glue model proposes four ways of specifying relationships between base and glue ob-

jects. These are part-of, using, in and out relationships. Both part-of and using relationships
allow the instances of base class to use the instances of glue classes. The part-of relationship
provides access to the data part of the base class. The in and out Type-hole relationships
allow the messages of an instance of a base class to be intercepted and manipulated by the
glue objects. The in-glue objects intercept and manipulate the messages sent to its base
objects. Whereas the out-glue objects intercept and manipulate the messages that emerge
from the base objects.
As explained in the previous section, the basic function of the constraint meta-object is

to dynamically intercept and validate the messages sent to the collaborator objects. Hence,
the constraint meta-objects can be elegantly modeled with the in and out Type-hole rela-
tionships. The RCR and SCR Constraint meta-objects have in Type-hole relationship with
the collaborator objects. Whereas SCS and RCS constraint meta-objects have out Type-hole
relationship with the collaborator objects.
The dynamic customization is achieved by attaching in-glue and out-glue objects to the

collaborator. For example, consider the situation depicted in Figure 2 where collaborator A

public class wireless-out : out constraints Technician {

:

Environment env;

C1:<env.acceptcompressdata()==’yes’>:compress-data();

public class wireless-in : in constraints Technician {

Environment env;

:
C1:<env.acceptcolo()r==’yes’>:suppress-color();

: :
}}

(c) In and Out constraints classes

public class Technician {

static public void main() {

// create collaborator and glue objects

distributedplug(...);

public class collaboration {

distributedunplug(....);
.......................

...............

}

in TH T1 {

out TH T2 {

public void Advice-of-Technician();

public void SeekExpertAdvice();

}
public void WorkOrder();

}

:

}

:
}

(a) Technician base class
(b) Main class

Figure 3. Sample Base and Glue classes

is operating in a wireless network environment and collaborator B is operating in a wired
network environment. Wireless-RCR and wireless-SCS constraints are to be attached to the
collaborator A to intercept its in-coming and out-going messages respectively. Similarly,
wired-RCR and Wired-SCS constraints are attached to the collaborator B to intercept its in-
coming and out-going messages respectively. These constraint meta-objects can be attached
to the collaborator objects using the plug operator.
Similarly, the wireless-SCR and wireless-RCS constraints have to be attached to the collab-

orator B, and wired-SCR and wired-RCS constraints have to be attached to the collaborator
A. While the decision to attach these constraints is made at one node, the actual attachment is
made to another object residing at another node. Hence, a need for remote customization of
objects exists. To achieve remote customization of objects two language constructs, namely,
distributed plug and distributed unplug have been provided. The distributed plug

operator is used to glue the two objects at the initiator node and two objects at remote
node whose classes are in glue relationships. The distributed unplug operator is used to
terminate the glue binding between the base objects and their glue objects.
In distributed glue model, a new object called distributed-glue manager has been intro-

duced for gluing of objects both locally and remotely. The main function of the distributed-
glue manager is to attach the glue objects on receiving the distributed plug message and
detach the glue objects on receiving the distributed unplug message. On receiving the
distributed plug message the distributed-glue manager attaches locally the glue object to
the collaborator object and sends a message called localplug() to the distributed-plug man-
ager at the other node. On receiving the localplug() message it attaches the glue object to
the collaborator object. The corresponding glue object has to be migrated to the other node.
These operations are automatically performed by the distributed-glue manager objects.
Figure 3a displays a code segment with Type-holes T1 and T2 declared as part of a class

Technician. This class is known as base class. The keyword TH signi�es that any class
that provides a de�nition for the method SeekExpertAdvice() can aid the class Technician in
completing its behavioral speci�cation. A base class is organized like any other class except
the addition of the keyword TH which quali�es for the Type-hole and a name for the Type-
hole. Figure 3a shows that there could be any number of Type-holes declared in a class.

Method names in the base class should be unique.
Figure 3c displays a code segment for in and out constraint classes. These classes are

known as glue classes. The presence of in constraints after the class name (in the de�nition
of a class) signi�es that the constraints de�ned in a class are applied on all the messages
invoked on the in Type-hole methods of a class Technician. Similarly, the presence of out
constraints after a class name signi�es that the constraints de�ned in the class are applied
on all the messages that are being sent from the out Type-hole methods of a class Technician.
Implementation of Distributed Glues: The distributed gluing scheme has been im-

plemented by extending the Java language with language constructs proposed in the scheme.
A parser is written in Perl which takes glue code and constraints code as input and outputs
Java code. Each Type-hole speci�cation in a base class is parsed into an interface declaration.
A class which is in glue with a base class implements the corresponding interface. Every
Type-hole in a base class is replaced with a reference to the interface represented by the
Type-hole. Every message sent on an in Type-hole method is �rst sent to the object's inter-
face reference. Every message that is being sent from the out Type-hole method is �rst sent
to the object's interface reference, i.e. the message is forwarded to the currently plugged glue
object. The parser generates the DistributedGlueManager class with appropriate functions.
The distributed plug and distributed unplug statements are replaced with a message
invocation on the distributed-glue manager object.

4: Conclusions

A new object model called Mobile Constraint meta-object has been proposed to e�ciently
handle the heterogeneity present due to multiple network services and architectures. The
model frames the environmental limitations as constraints and these constraints are abstrac-
ted into a constraint meta-object. Programming language constructs have been proposed
to dynamically attach and detach the constraint meta-object to the object. Four types of
constraint meta-objects have been identi�ed to make the constraints truly transparent to
the user objects. To remotely customize these objects a distributed glue model has been
proposed. Though these constraint meta-objects introduce some overhead, the advantages
are signi�cant in terms of the
exibility and extensibility they provide. The models also
facilitate component oriented programming.

References

[1] Bernd Bruegge and Ben Bennington, Applications of Mobile Computing and Commu-
nication, IEEE Personal Communications, February 1996, pp 64{71.

[2] Janaki Ram D et. al., The Glue Model for Reuse by Customization in Object-Oriented
Systems, TR No. IITM-CSE-DOS-98-02, CSE Dept, Indian Institute of Technology,
Madras, India.

[3] Janak Ram D et. al., Constraint Meta-Object: A New Model for Distributed Collab-
orative Designing, IEEE Trans. on SMC, Vol. 27, Part A, Issue 2, March 1997, pp.
208{221.

[4] Nigel Davies et. al., Supporting Collaborative Applications in a Heterogeneous Mobile
Environment, Computer Communications, Vol. 19, No. 4, April 1996, pp. 346{358.

